a,b,c为正数,a+b+c=1,求证1/(a^2+1)+1/(b^2+1)+1/(c^2+1)<=27/10 超难! 要求用不等式!
a,b,c为正数,a+b+c=1,求证1/(a^2+1)+1/(b^2+1)+1/(c^2+1)<=27/10 超难! 要求用不等式!
日期:2022-02-05 17:28:09 人气:1
令A=1/a, B=1/b, C=1/c,
1/(a^2+1)+1/(b^2+1)+1/(c^2+1)=3-[1/(1+A^2)+1/(1+B^2)+1/(1+C^2)]
由基本不等式
1/(1+A^2)+1/(1+B^2)+1/(1+C^2) >=((3+A^2+B^2+C^2)/
1/(a^2+1)+1/(b^2+1)+1/(c^2+1)=3-[1/(1+A^2)+1/(1+B^2)+1/(1+C^2)]
由基本不等式
1/(1+A^2)+1/(1+B^2)+1/(1+C^2) >=((3+A^2+B^2+C^2)/