已知:〔a-b][b-c][c-a]/ [a+b][b+c][c+a]=5/132 求a/ [a+b] +b/[b+c]+c/[c+a ]的值
已知:〔a-b][b-c][c-a]/ [a+b][b+c][c+a]=5/132 求a/ [a+b] +b/[b+c]+c/[c+a ]的值
日期:2021-08-02 05:00:58 人气:1
解:由已知变形,得
(a-b)/(a+b)+(b-c)/(b+c)+(c-a)/(c+a)=5/132
-(a-b)/(a+b)-(b-c)/(b+c)-(c-a)/(c+a)=-5/132
(b-a)/(a+b)+(c-b)/(b+c)+(a-c)/(c+a)=-5/132
(b+a-2a)/(a+b)+(c+b-2b)/(b+c)+(a+c-
(a-b)/(a+b)+(b-c)/(b+c)+(c-a)/(c+a)=5/132
-(a-b)/(a+b)-(b-c)/(b+c)-(c-a)/(c+a)=-5/132
(b-a)/(a+b)+(c-b)/(b+c)+(a-c)/(c+a)=-5/132
(b+a-2a)/(a+b)+(c+b-2b)/(b+c)+(a+c-