已知正项数列{an}满足a1=a(0<a<1),且an+1=an1+an(n∈N*)(1)求a2,a3,a4;(2)求证:数列{1an}
已知正项数列{an}满足a1=a(0<a<1),且an+1=an1+an(n∈N*)(1)求a2,a3,a4;(2)求证:数列{1an}
日期:2016-10-05 03:16:04 人气:1
解答:(1)解:由题意,a2=a1+a,a3=a1+2a,a4=a1+3a;(2)证明:∵an+1=an1+an,∴1an+1=1+1an,1an+1?1an=1.即数列{1an}是首项为1a,公差为1的等差数列;(3)证明:∵数列{1an}是首项为1a,公差为1的等差数列,∴1an=1a+(n?1),an=a1+(n?1)a=11a+(n?1)<1n(0<a<1).∴11×2+12×3+…+1n(n+1)=1?1n+1<1.