设z1是虚数,z2=z1+1/z1是实数,且-1小于等于z2小于等于1,(1)求z1的绝对值(2)z1的实部的取值范围

日期:2012-03-30 09:00:38 人气:1

设z1是虚数,z2=z1+1/z1是实数,且-1小于等于z2小于等于1,(1)求z1的绝对值(2)z1的实部的取值范围

设:z1=a+bi,则:z2=(z1)+(1/z1)={a+[a/(a²+b²)]}+{b-[b/(a²+b²)]}i是实数,则: 虚部b-[b/(a²+b²)]=0,得:b=0或a²+b²=1【若b=0,则z1不是虚数,则b=0舍去】,所以 1、|z1|=√(a²+b²)=1; 2、-1≤z2≤1,则:-1≤a+[a/(a²+b²)]≤1,
    A+
热门评论