若f(x)=Sin^2ax-sinaxcosax(a>0)的最小正周期为兀/2,(1)求a的值(2)
若f(x)=Sin^2ax-sinaxcosax(a>0)的最小正周期为兀/2,(1)求a的值(2)
日期:2013-04-02 21:48:00 人气:1
f(x)=sin²ax-sinaxcosax
=(1-cos2ax)/2-1/2sin2ax
=1/2-1/2*(cos2ax+sin2ax)
=1/2-√2/2*(√2/2sin2ax+√2/2cos2ax)
=1/2-√2/2*sin(2ax+π/4)
(1) 2π/(2a)=π/2
a=2
(2) f(x)=1/