若f(x)=Sin^2ax-sinaxcosax(a>0)的最小正周期为兀/2,(1)求a的值(2)
若f(x)=Sin^2ax-sinaxcosax(a>0)的最小正周期为兀/2,(1)求a的值(2)
日期:2013-04-02 21:45:07 人气:1
f(x)
=sin²ax-sinaxcosax
=-1/2(2cos²ax-1)-1/2?2sinaxcosax-1/2
= -1/2cos2ax-1/2sin2ax-1/2
=-1/√2cos(2ax-π/4)-1/2
(1)最小正周期为π/2,由T=2π/ω得π/2=2π/2a,a=2
(2)f(x)=-1/√2cos(4x-π/4)-1/