若f(x)=Sin^2ax-sinaxcosax(a>0)的最小正周期为兀/2,(1)求a的值(2)

日期:2013-04-02 21:45:07 人气:1

若f(x)=Sin^2ax-sinaxcosax(a>0)的最小正周期为兀/2,(1)求a的值(2)

f(x) =sin²ax-sinaxcosax =-1/2(2cos²ax-1)-1/2?2sinaxcosax-1/2 = -1/2cos2ax-1/2sin2ax-1/2 =-1/√2cos(2ax-π/4)-1/2 (1)最小正周期为π/2,由T=2π/ω得π/2=2π/2a,a=2 (2)f(x)=-1/√2cos(4x-π/4)-1/
    A+
热门评论