求证:当a、b、c为整数时,(a+b+c)(1/a+1/b+1/c)≥9
求证:当a、b、c为整数时,(a+b+c)(1/a+1/b+1/c)≥9
日期:2021-06-13 05:12:31 人气:1
是正数吧
(a+b+c)(1/a+1/b+1/c)
=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=3+(a/b+b/a)+(a/c+c/a)+(b/c+c/b)
由均值不等式
a/b+b/a>=2根号(a/b*b/a)=2
同理a/c+c/a>=2
b/
(a+b+c)(1/a+1/b+1/c)
=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=3+(a/b+b/a)+(a/c+c/a)+(b/c+c/b)
由均值不等式
a/b+b/a>=2根号(a/b*b/a)=2
同理a/c+c/a>=2
b/